Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Autoimmun ; 144: 103177, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38368767

RESUMEN

Psoriasis (PS) and atopic dermatitis (AD) are common skin inflammatory diseases characterized by hyper-responsive keratinocytes. Although, some cytokines have been suggested to be specific for each disease, other cytokines might be central to both diseases. Here, we show that Tumor necrosis factor superfamily member 14 (TNFSF14), known as LIGHT, is required for experimental PS, similar to its requirement in experimental AD. Mice devoid of LIGHT, or deletion of either of its receptors, lymphotoxin ß receptor (LTßR) and herpesvirus entry mediator (HVEM), in keratinocytes, were protected from developing imiquimod-induced psoriatic features, including epidermal thickening and hyperplasia, and expression of PS-related genes. Correspondingly, in single cell RNA-seq analysis of PS patient biopsies, LTßR transcripts were found strongly expressed with HVEM in keratinocytes, and LIGHT was upregulated in T cells. Similar transcript expression profiles were also seen in AD biopsies, and LTßR deletion in keratinocytes also protected mice from allergen-induced AD features. Moreover, in vitro, LIGHT upregulated a broad spectrum of genes in human keratinocytes that are clinical features of both PS and AD skin lesions. Our data suggest that agents blocking LIGHT activity might be useful for therapeutic intervention in PS as well as in AD.


Asunto(s)
Dermatitis Atópica , Psoriasis , Humanos , Ratones , Animales , Miembro 14 de Receptores del Factor de Necrosis Tumoral/genética , Miembro 14 de Receptores del Factor de Necrosis Tumoral/metabolismo , Dermatitis Atópica/genética , Dermatitis Atópica/metabolismo , Receptor beta de Linfotoxina/genética , Receptor beta de Linfotoxina/metabolismo , Miembro 14 de la Superfamilia de Ligandos de Factores de Necrosis Tumoral/genética , Miembro 14 de la Superfamilia de Ligandos de Factores de Necrosis Tumoral/metabolismo , Queratinocitos/metabolismo , Citocinas/metabolismo , Psoriasis/genética , Psoriasis/metabolismo , Inflamación/metabolismo
2.
Clin Exp Immunol ; 215(3): 302-312, 2024 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-38190323

RESUMEN

Inter-α-trypsin inhibitor heavy chain 4 (ITIH4) is a major protein in serum and reported to be upregulated at the onset of rheumatoid arthritis (RA). Its citrullinated form, cit-ITIH4, is specifically found in the serum and synovial fluid of patients with RA. However, the detailed function of ITIH4 in arthritis remains unknown. The aim of this study was to clarify the role of ITIH4 and cit-ITIH4 using experimental arthritis models. ITIH4 and cit-ITIH4 expression was examined in steady-state mice and two different arthritis models, and their pathological effects were examined in Itih4-deficient mice. In naïve C57BL/6 (WT) mice, ITIH4 was expressed as mRNA in the liver and the lung and was expressed as protein in serum and hepatocytes. In K/BxN serum transferred arthritis (K/BxN-STA) and collagen-induced arthritis (CIA), ITIH4 and cit-ITIH4 in sera were increased before the onset of arthritis, and cit-ITIH4 was further increased at the peak of arthritis. In Itih4-deficient mice, citrullinated proteins in serum and joints, especially 120 kDa protein, were clearly diminished; however, there was no significant difference in arthritis severity between WT and itih-/- mice either in the K/BxN-STA or CIA model. CIA mice also exhibited pulmonary lesions and itih4-/- mice tended to show enhanced inflammatory cell aggregation compared to WT mice. Neutrophils in the lungs of itih4-/- mice were significantly increased compared to WT mice. In summary, ITIH4 itself did not alter the severity of arthritis but may inhibit autoimmune inflammation via suppression of neutrophil recruitment.


Asunto(s)
alfa-Globulinas , Artritis Experimental , Artritis Reumatoide , Animales , Humanos , Ratones , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Proteínas
3.
Rheumatol Int ; 44(3): 549-556, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38170205

RESUMEN

IgG4-related disease (IgG4-RD) is a systemic condition in which IgG4+ plasma cell infiltration and fibrosis cause organ swelling and lead to diverse clinical manifestations. Although IgG4-RD typically responds to glucocorticoids (GCs), relapse during tapering occurs and an early GC-sparing approach might therefore be beneficial. Systemic lupus erythematosus (SLE) is a chronic inflammatory disease with multiple symptoms that is also treated with GCs as a first-line therapy. Recently, belimumab, a recombinant human IgG-1λ monoclonal antibody that inhibits B-cell activating factor, was approved, but reports of use for IgG4-RD are scarce. Here, we present a rare case of IgG4-RD complicated with SLE which was successfully treated with belimumab. A 67-year-old man was diagnosed with IgG4-RD based on a high serum IgG4 level and histopathological findings. Furthermore, he had pericardial effusion on echocardiography, and laboratory tests revealed thrombocytopenia, autoimmune hemolysis, positive anti-nuclear antibodies, positive anti-DNA antibodies, and hypocomplementemia. These data led to an SLE diagnosis. Treatment was started with prednisolone at 40 mg/day, plus hydroxychloroquine, which initially improved both the SLE and IgG4-RD symptoms. During the GC tapering, belimumab was added and clinical symptoms resolved completely. Our case and the literature review summarize reported rare overlapping cases of IgG4-RD and SLE and suggest that belimumab is a promising candidate for the treatment of IgG4-RD.


Asunto(s)
Enfermedad Relacionada con Inmunoglobulina G4 , Lupus Eritematoso Sistémico , Masculino , Humanos , Anciano , Enfermedad Relacionada con Inmunoglobulina G4/complicaciones , Enfermedad Relacionada con Inmunoglobulina G4/diagnóstico , Enfermedad Relacionada con Inmunoglobulina G4/tratamiento farmacológico , Lupus Eritematoso Sistémico/complicaciones , Lupus Eritematoso Sistémico/diagnóstico , Lupus Eritematoso Sistémico/tratamiento farmacológico , Anticuerpos Monoclonales Humanizados/uso terapéutico , Anticuerpos Monoclonales/uso terapéutico , Glucocorticoides/uso terapéutico , Inmunoglobulina G , Inmunosupresores/uso terapéutico , Resultado del Tratamiento
4.
Intern Med ; 63(5): 743-747, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-37468247

RESUMEN

We present the case of a 17-year-old woman with IgA vasculitis (IgAV) who presented with relapsing gastrointestinal (GI) symptoms that were refractory to glucocorticoid and combination therapy with cyclosporine A, azathioprine or mycophenolate mofetil (MMF). The patient responded well to remission induction with intravenous cyclophosphamide (IVCY) and was successfully maintained with MMF. Remission induction with IVCY followed by maintenance therapy with MMF was effective in a patient with multidrug-resistant IgAV with GI lesions.


Asunto(s)
Vasculitis por IgA , Nefritis Lúpica , Femenino , Humanos , Adolescente , Ácido Micofenólico/uso terapéutico , Inmunosupresores/uso terapéutico , Ciclofosfamida/uso terapéutico , Azatioprina , Inducción de Remisión
5.
Front Immunol ; 14: 1243548, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37771598

RESUMEN

Macrophages play a critical role in the regulation of inflammation and tissue homeostasis. In addition to their vital functions for cell survival and physiology, mitochondria play a crucial role in innate immunity as a platform for the induction of inflammatory responses by regulating cell signaling and dynamics. Dynamin-related protein 1 (Drp1) plays a role in the induction of inflammatory responses and the subsequent development of various diseases. PGAM5 (phosphoglycerate mutase member 5) is a mitochondrial outer membrane phosphatase that dephosphorylates its substrate, Drp1. Previous studies showed that PGAM5 regulates the phosphorylation of Drp1 for the activation of NKT cells and T cells. However, it is not clear how PGAM5 regulates Drp1 activity for the induction of inflammation in macrophages. Here, we demonstrate that PGAM5 activity regulates the dephosphorylation of Drp1 in macrophages, leading to the induction of proinflammatory responses in macrophages. In TLR signaling, PGAM5 regulates the expression and production of inflammatory cytokines by regulating the activation of downstream signaling pathways, including the NF-κB and MAPK pathways. Upon LPS stimulation, PGAM5 interacts with Drp1 to form a complex, leading to the production of mtROS. Furthermore, PGAM5-Drp1 signaling promotes the polarization of macrophages toward a proinflammatory phenotype. Our study further demonstrates that PGAM5-Drp1 signaling promotes metabolic reprogramming by upregulating glycolysis and mitochondrial metabolism in macrophages. Altogether, PGAM5 signaling is a linker between alterations in Drp1-mediated mitochondrial dynamics and inflammatory responses in macrophages and may be a target for the treatment of inflammatory diseases.


Asunto(s)
Dinaminas , Fosfoproteínas Fosfatasas , Humanos , Dinaminas/genética , Inflamación , Macrófagos/metabolismo , Proteínas Mitocondriales/genética , Fosfoproteínas Fosfatasas/genética , Transducción de Señal , Animales
6.
J Physiol ; 601(12): 2273-2291, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37062932

RESUMEN

Fibroblasts are essential components of the stroma, sustaining a variety of tissues and being key to the process of tissue repair after injury. Their role in tissue repair has been attributed to their ability to acquire a contractile, extracellular matrix-producing phenotype known as myofibroblasts. This property is primarily dependent on their response to the pleiotropic cytokine transforming growth factor-ß1. Until recently, the potential role of fibroblasts in other homeostatic and disease-related processes was less well understood. Although in vitro studies indicated that fibroblasts are able to respond to and secrete inflammatory mediators, definitive evidence of their contribution to chronic inflammation was limited. However, the emergence of techniques that allow exploration of tissues at the single cell level has challenged the previous paradigms on fibroblast identity and functions, and has led to the discovery of significant diversity, showing the presence of fibroblasts with alternate transcriptional profiles in a variety of tissues. These studies have also suggested potential roles of novel fibroblast subtypes as regulators of epithelial homeostasis and renewal, inflammatory cell infiltration and activation, and antigen presentation. Here, we provide a comprehensive review of the recent literature on fibroblast diversity in the digestive tract, skin, lungs and joints. We also review evidence of their contribution to the regulation of homeostasis and chronic inflammation, as well as their interactions with other cells in various tissue compartments. We discuss evidence of different factors involved in the control of fibroblast function, addressing the role of various cytokines, transcription factors and epigenetic changes, as well as microenvironmental factors, including extracellular matrix stiffness, hypoxia, and metabolic shifts.


Asunto(s)
Fibroblastos , Miofibroblastos , Humanos , Fibroblastos/metabolismo , Miofibroblastos/metabolismo , Fenotipo , Citocinas/metabolismo , Inflamación/metabolismo , Homeostasis
7.
Allergy ; 78(8): 2168-2180, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-36951658

RESUMEN

BACKGROUND: Exacerbations of asthma are thought to be strongly dependent on reactivation of allergen-induced lung tissue-resident and circulatory memory CD4 T cells. Strategies that broadly inhibit multiple T cell populations might then be useful to limit asthma. Accordingly, we tested whether targeting CD3 during exposure to inhaled allergen could prevent the accumulation of lung-localized effector memory CD4 T cells and block exacerbations of asthmatic inflammation. METHODS: House dust mite-sensitized and repetitively challenged BL/6 mice were transiently treated therapeutically with F(ab')2 anti-CD3ε and memory T cell responses and lung inflammation were assessed. PBMCs from HDM-allergic donors were examined for the effect of anti-CD3 on expansion of allergen-reactive T cells. RESULTS: Allergen-sensitized mice undergoing exacerbations of asthma were protected from lung inflammation by transient therapeutic treatment with F(ab')2 anti-CD3. Regardless of whether sensitized mice underwent a secondary or tertiary recall response to inhaled allergen, anti-CD3 inhibited all phenotypes of effector memory CD4 T cells in the lung tissue and lung vasculature by 80%-90%, including those derived from tissue-resident and circulatory memory T cells. This did not depend on Treg cells suggesting it was primarily a blocking effect on memory T cell signaling. Correspondingly, anti-CD3 also strongly inhibited proliferation of human allergen-reactive memory CD4 T cells from allergic individuals. In contrast, the number of surviving tissue-resident memory CD4 T cells that were maintained in the lungs at later times was not robustly reduced by anti-CD3. CONCLUSION: Anti-CD3 F(ab')2 administration at the time of allergen exposure represents a viable strategy for limiting the immediate activity of allergen-responding memory T cells and asthma exacerbations.


Asunto(s)
Asma , Hipersensibilidad , Neumonía , Animales , Ratones , Humanos , Células T de Memoria , Linfocitos T CD4-Positivos , Células Th2 , Asma/prevención & control , Alérgenos/efectos adversos , Pyroglyphidae , Modelos Animales de Enfermedad
8.
J Allergy Clin Immunol ; 151(4): 976-990.e5, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36473503

RESUMEN

BACKGROUND: Dysregulation of airway smooth muscle cells (ASM) is central to the severity of asthma. Which molecules dominantly control ASM in asthma is unclear. High levels of the cytokine LIGHT (aka TNFSF14) have been linked to asthma severity and lower baseline predicted FEV1 percentage, implying that signals through its receptors might directly control ASM dysfunction. OBJECTIVE: Our study sought to determine whether signaling via lymphotoxin beta receptor (LTßR) or herpesvirus entry mediator from LIGHT dominantly drives ASM hyperreactivity induced by allergen. METHODS: Conditional knockout mice deficient for LTßR or herpesvirus entry mediator in smooth muscle cells were used to determine their role in ASM deregulation and airway hyperresponsiveness (AHR) in vivo. Human ASM were used to study signals induced by LTßR. RESULTS: LTßR was strongly expressed in ASM from normal and asthmatic subjects compared to several other receptors implicated in smooth muscle deregulation. Correspondingly, conditional deletion of LTßR only in smooth muscle cells in smMHCCreLTßRfl/fl mice minimized changes in their numbers and mass as well as AHR induced by house dust mite allergen in a model of severe asthma. Intratracheal LIGHT administration independently induced ASM hypertrophy and AHR in vivo dependent on direct LTßR signals to ASM. LIGHT promoted contractility, hypertrophy, and hyperplasia of human ASM in vitro. Distinguishing LTßR from the receptors for IL-13, TNF, and IL-17, which have also been implicated in smooth muscle dysregulation, LIGHT promoted NF-κB-inducing kinase-dependent noncanonical nuclear factor kappa-light-chain enhancer of activated B cells in ASM in vitro, leading to sustained accumulation of F-actin, phosphorylation of myosin light chain kinase, and contractile activity. CONCLUSIONS: LTßR signals directly and dominantly drive airway smooth muscle hyperresponsiveness relevant for pathogenesis of airway remodeling in severe asthma.


Asunto(s)
Asma , Miembro 14 de Receptores del Factor de Necrosis Tumoral , Humanos , Ratones , Animales , Receptor beta de Linfotoxina/genética , Asma/patología , Músculo Liso , Miocitos del Músculo Liso/patología , Ratones Noqueados , Alérgenos , Pulmón/patología
9.
Sci Rep ; 12(1): 21334, 2022 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-36494453

RESUMEN

Recent studies have suggested that the clinical features of elderly-onset adult-onset Still's disease (AOSD) differ from those of young and middle-aged-onset patients, whereas the details remain unclear, and cytokine profiles of elderly-onset AOSD have not been reported. To clarify the clinical features and cytokine profiles of elderly-onset AOSD, we examined patients with AOSD who developed the disease between January 2006 and September 2021. We divided the patients into the young and middle-aged-onset group (aged < 65 years) and the elderly-onset group (aged ≥ 65 years) and compared the groups in terms of patient characteristics, clinical symptoms, laboratory findings including serum interleukin (IL)-6 and IL-18, treatment, and prognosis. A total of 48 patients were examined (10 in the elderly-onset group). In the elderly-onset group, atypical rash was significantly more frequent, typical rash and splenomegaly were significantly less frequent, white blood cell count and neutrophil ratio were significantly higher and serum IL-6 levels were significantly lower. Serum IL-6 showed a significantly negative correlation with age at onset. Treatment and relapse were comparable between the 2 groups, whereas infections were significantly more frequent in the elderly-onset group. The clinical features and cytokine profiles of elderly-onset AOSD might differ from those of young and middle-aged-onset AOSD.


Asunto(s)
Exantema , Enfermedad de Still del Adulto , Adulto , Persona de Mediana Edad , Anciano , Humanos , Interleucina-6 , Ensayo de Inmunoadsorción Enzimática
10.
J Immunol ; 2022 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-36426994

RESUMEN

Eosinophilic esophagitis (EoE) is a chronic type 2 allergic disease, with esophageal tissue remodeling as the mechanism behind clinical dysphagia and strictures. IL-13 is thought to be a central driver of disease, but other inflammatory factors, such as IFNs and TNF superfamily members, have been hypothesized to play a role in disease pathogenesis. We recently found that the cytokine TNFSF14/LIGHT is upregulated in the esophagus of patients with EoE and that LIGHT promotes inflammatory activity in esophageal fibroblasts. However, the global effects of LIGHT on EoE pathogenesis in vivo remain unknown. We investigated the impact of a LIGHT deficiency in a murine model of EoE driven by house dust mite allergen. Chronic intranasal challenge with house dust mite promoted esophageal eosinophilia and increased CD4+ T cell numbers and IL-13 and CCL11 production in wild-type mice. Esophageal remodeling was reflected by submucosal collagen accumulation, increased muscle density, and greater numbers of fibroblasts. LIGHT-/- mice displayed normal esophageal eosinophilia, but exhibited reduced frequencies of CD4 T cells, IL-13 expression, submucosal collagen, and muscle density and a decrease in esophageal accumulation of fibroblasts. In vitro, LIGHT increased division of human esophageal fibroblasts and selectively enhanced IL-13-mediated expression of a subset of inflammatory and fibrotic genes. These results show that LIGHT contributes to various features of murine EoE, impacting the accumulation of CD4 T cells, IL-13 production, fibroblast proliferation, and esophagus remodeling. These findings suggest that LIGHT may be, to our knowledge, a novel therapeutic target for the treatment of EoE.

11.
J Immunol ; 2022 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-36288906

RESUMEN

Eosinophilic esophagitis (EoE) is a chronic type 2 allergic disease, with esophageal tissue remodeling as the mechanism behind clinical dysphagia and strictures. IL-13 is thought to be a central driver of disease, but other inflammatory factors, such as IFNs and TNF superfamily members, have been hypothesized to play a role in disease pathogenesis. We recently found that the cytokine TNFSF14/LIGHT is upregulated in the esophagus of patients with EoE and that LIGHT promotes inflammatory activity in esophageal fibroblasts. However, the global effects of LIGHT on EoE pathogenesis in vivo remain unknown. We investigated the impact of a LIGHT deficiency in a murine model of EoE driven by house dust mite allergen. Chronic intranasal challenge with house dust mite promoted esophageal eosinophilia and increased CD4+ T cell numbers and IL-13 and CCL11 production in wild-type mice. Esophageal remodeling was reflected by submucosal collagen accumulation, increased muscle density, and greater numbers of fibroblasts. LIGHT-/- mice displayed normal esophageal eosinophilia, but exhibited reduced frequencies of CD4 T cells, IL-13 expression, submucosal collagen, and muscle density and a decrease in esophageal accumulation of fibroblasts. In vitro, LIGHT increased division of human esophageal fibroblasts and selectively enhanced IL-13-mediated expression of a subset of inflammatory and fibrotic genes. These results show that LIGHT contributes to various features of murine EoE, impacting the accumulation of CD4 T cells, IL-13 production, fibroblast proliferation, and esophagus remodeling. These findings suggest that LIGHT may be, to our knowledge, a novel therapeutic target for the treatment of EoE.

12.
Front Immunol ; 13: 953730, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36090971

RESUMEN

Adult onset Still disease (AOSD) is a systemic inflammatory disorder characterized by skin rash, spiking fever, arthritis, sore throat, lymphadenopathy, and hepatosplenomegaly. Although the etiology of this disease has not been fully clarified, both innate and acquired immune responses could contribute to its pathogenesis. Hyperactivation of macrophages and neutrophils along with low activation of natural killer (NK) cells in innate immunity, as well as hyperactivation of Th1 and Th17 cells, whereas low activation of regulatory T cells (Tregs) in acquired immunity are involved in the pathogenic process of AOSD. In innate immunity, activation of monocytes/macrophages might play central roles in the development of AOSD and macrophage activation syndrome (MAS), a severe life-threating complication of AOSD. Regarding the activation mechanisms of monocytes/macrophages in AOSD, in addition to type II interferon (IFN) stimulation, several pathways have recently been identified, such as the pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs)-pattern recognition receptors (PRRs) axis, and neutrophil extracellular traps (NETs)-DNA. These stimulations on monocytes/macrophages cause activation of the nucleotide-binding oligomerization domain, leucine-rich repeat, and pyrin domain (NLRP) 3 inflammasomes, which trigger capase-1 activation, resulting in conversion of pro-IL-1ß and pro-IL-18 into mature forms. Thereafter, IL-1ß and IL-18 produced by activated monocytes/macrophages contribute to various clinical features in AOSD. We identified placenta-specific 8 (PLAC8) as a specifically increased molecule in monocytes of active AOSD, which correlated with serum levels of CRP, ferritin, IL-1ß, and IL-18. Interestingly, PLAC8 could suppress the synthesis of pro-IL-1ß and pro-IL-18 via enhanced autophagy; thus, PLAC8 seems to be a regulatory molecule in AOSD. These findings for the activation mechanisms of monocytes/macrophages could shed light on the pathogenesis and development of a novel therapeutic strategy for AOSD.


Asunto(s)
Síndrome de Activación Macrofágica , Enfermedad de Still del Adulto , Humanos , Interleucina-18/metabolismo , Síndrome de Activación Macrofágica/etiología , Síndrome de Activación Macrofágica/metabolismo , Macrófagos , Monocitos/metabolismo , Proteínas/metabolismo
13.
J Biosci Bioeng ; 134(1): 70-76, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35450786

RESUMEN

A variety of methods have been reported using polymerase chain reaction (PCR)-based nucleic acid testing (NAT) because of its potential to be used in highly sensitive inspection systems. Among these NATs, fusion-PCR (also called as overlap-extension-PCR) has been focused on this study and adopted to generate the fused amplicon composed of plural marker gene fragments for detection. Generally, conventional agarose gel electrophoresis followed by gel staining is employed to check the PCR results. However, these are time-consuming processes that use specific equipment. To overcome these disadvantages, the immunochromatographic test (ICT) for the detection of PCR amplicons with hapten-labels that were generated by PCR using hapten-labeled primers was also adopted in this study. Based on these concepts, we constructed the systems of hapten-labeled fusion-PCR (HL-FuPCR) followed by ICT (HL-FuPCR-ICT) for the two and three marker genes derived from pathogenic microbe. As a result, we successfully developed a two marker genes system for the pathogenic influenza A virus and a three marker genes system for the penicillin-resistant Streptococcus pneumoniae. These detection systems of HL-FuPCR-ICT are characterized by simple handling and rapid detection within few minutes, and also showed the results as clear lines. Thus, the HL-FuPCR-ICT system introduced in this study has potential for use as a user-friendly inspection tool with the advantages especially in the detection of specific strains or groups expressing the characteristic phenotype(s) such as antibiotic resistance and/or high pathogenicity even in the same species.


Asunto(s)
Haptenos , Pruebas Inmunológicas , Cartilla de ADN , Reacción en Cadena de la Polimerasa/métodos , Sensibilidad y Especificidad
14.
Mol Cancer Ther ; 21(4): 616-624, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35086958

RESUMEN

Head and neck squamous cell carcinoma (HNSCC) ranks sixth in cancer incidence worldwide and has a 5-year survival rate of only 63%. Immunotherapies-principally immune checkpoint inhibitors (ICI), such as anti-PD-1 and anti-CTLA-4 antibodies that restore endogenous antitumor T-cell immunity-offer the greatest promise for HNSCC treatment. Anti-PD-1 has been recently approved for first-line treatment of recurrent and metastatic HNSCC; however, less than 20% of patients show clinical benefit and durable responses. In addition, the clinical application of ICI has been limited by immune-related adverse events (irAE) consequent to compromised peripheral immune tolerance. Although irAEs are often reversible, they can become severe, prompting premature therapy termination or becoming life threatening. To address the irAEs inherent to systemic ICI therapy, we developed a novel, local delivery strategy based upon an array of soluble microneedles (MN). Using our recently reported syngeneic, tobacco-signature murine HNSCC model, we found that both systemic and local-MN anti-CTLA-4 therapy lead to >90% tumor response, which is dependent on CD8 T cells and conventional dendritic cell type 1 (cDC1). However, local-MN delivery limited the distribution of anti-CTLA-4 antibody from areas distal to draining lymphatic basins. Employing Foxp3-GFPDTR transgenic mice to interrogate irAEs in vivo, we found that local-MN delivery of anti-CTLA-4 protects animals from irAEs observed with systemic therapy. Taken together, our findings support the exploration of MN-intratumoral ICI delivery as a viable strategy for HNSCC treatment with reduced irAEs, and the opportunity to target cDC1s as part of multimodal treatment options to boost ICI therapy.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias de Cabeza y Cuello , Neoplasias de la Boca , Animales , Carcinoma de Células Escamosas/tratamiento farmacológico , Neoplasias de Cabeza y Cuello/etiología , Humanos , Inmunoterapia/efectos adversos , Ratones , Neoplasias de la Boca/tratamiento farmacológico , Carcinoma de Células Escamosas de Cabeza y Cuello/tratamiento farmacológico
15.
Mucosal Immunol ; 15(2): 327-337, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34903876

RESUMEN

Fibroblasts mediate tissue remodeling in eosinophilic esophagitis (EoE), a chronic allergen-driven inflammatory pathology. Diverse fibroblast subtypes with homeostasis-regulating or inflammatory profiles have been recognized in various tissues, but which mediators induce these alternate differentiation states remain largely unknown. We recently identified that TNFSF14/LIGHT promotes an inflammatory esophageal fibroblast in vitro. Herein we used esophageal biopsies and primary fibroblasts to investigate the role of the LIGHT receptors, herpes virus entry mediator (HVEM) and lymphotoxin-beta receptor (LTßR), and their downstream activated pathways, in EoE. In addition to promoting inflammatory gene expression, LIGHT down-regulated homeostatic factors including WNTs, BMPs and type 3 semaphorins. In vivo, WNT2B+ fibroblasts were decreased while ICAM-1+ and IL-34+ fibroblasts were expanded in EoE, suggesting that a LIGHT-driven gene signature was imprinted in EoE versus normal esophageal fibroblasts. HVEM and LTßR overexpression and deficiency experiments demonstrated that HVEM regulates a limited subset of LIGHT targets, whereas LTßR controls all transcriptional effects. Pharmacologic blockade of the non-canonical NIK/p100/p52-mediated NF-κB pathway potently silenced LIGHT's transcriptional effects, with a lesser role found for p65 canonical NF-κB. Collectively, our results show that LIGHT promotes differentiation of esophageal fibroblasts toward an inflammatory phenotype and represses homeostatic gene expression via a LTßR-NIK-p52 NF-κB dominant pathway.


Asunto(s)
Esófago , Inflamación , Transcriptoma , Miembro 14 de la Superfamilia de Ligandos de Factores de Necrosis Tumoral , Esófago/metabolismo , Fibroblastos/metabolismo , Homeostasis , Humanos , Inflamación/genética , Receptor beta de Linfotoxina/genética , Receptor beta de Linfotoxina/metabolismo , FN-kappa B/metabolismo , Transducción de Señal , Miembro 14 de la Superfamilia de Ligandos de Factores de Necrosis Tumoral/genética , Miembro 14 de la Superfamilia de Ligandos de Factores de Necrosis Tumoral/metabolismo
16.
Sci Immunol ; 6(65): eabi8823, 2021 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-34797693

RESUMEN

TNF and IL-17 are two cytokines that drive dysregulated keratinocyte activity, and their targeting is highly efficacious in patients with psoriasis, but whether these molecules act with other inflammatory factors is not clear. Here, we show that mice having a keratinocyte-specific deletion of Fn14 (Tnfrsf12a), the receptor for the TNF superfamily cytokine TWEAK (Tnfsf12), displayed reduced imiquimod-induced skin inflammation, including diminished epidermal hyperplasia and less expression of psoriasis signature genes. This corresponded with Fn14 being expressed in keratinocytes in human psoriasis lesions and TWEAK being found in several subsets of skin cells. Transcriptomic studies in human keratinocytes revealed that TWEAK strongly overlaps with IL-17A and TNF in up-regulating the expression of CXC chemokines, along with cytokines such as IL-23 and inflammation-associated proteins like S100A8/9 and SERPINB1/B9, all previously found to be highly expressed in the lesional skin of patients with psoriasis. TWEAK displayed strong synergism with TNF or IL-17A in up-regulating messenger RNA for many psoriasis-associated genes in human keratinocytes, including IL23A, IL36G, and multiple chemokines, implying that TWEAK acts with TNF and IL-17 to enhance feedback inflammatory activity. Correspondingly, therapeutic treatment of mice with anti-TWEAK was equally as effective as antibodies to IL-17A or TNF in reducing clinical and immunological features of psoriasis-like skin inflammation and combination targeting of TWEAK with either cytokine had no greater inhibitory effect, reinforcing the conclusion that all three cytokines function together. Thus, blocking TWEAK could be comparable to targeting TNF or IL-17 and might be considered as an alternate therapeutic treatment for psoriasis.


Asunto(s)
Citocina TWEAK/inmunología , Interleucina-17/inmunología , Queratinocitos/inmunología , Psoriasis/inmunología , Factores de Necrosis Tumoral/inmunología , Animales , Modelos Animales de Enfermedad , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Psoriasis/terapia
17.
J Allergy Clin Immunol ; 147(3): 1087-1092.e3, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33065121

RESUMEN

BACKGROUND: Poor clearance of apoptotic cells has been suggested to contribute to severe asthma, but whether uptake of apoptotic cells by lung phagocytes might dampen house dust mite (HDM)-induced lung inflammation has not been shown. OBJECTIVES: This study investigated whether apoptotic cell engulfment in the murine lung impacts the development of allergen-induced asthmatic airway inflammation and which immune modulating mechanisms were activated. METHODS: Apoptotic cells were infused into the lungs of mice challenged with HDM allergen and lung inflammation, expression of suppressive molecules, and induction of regulatory T cells were monitored. Additionally, an adenosine receptor agonist was tested to study the mechanism of suppression elicited by apoptotic cells. RESULTS: Apoptotic cell uptake by lung alveolar macrophages suppressed HDM-driven allergic asthma. This was associated with promoting the regulatory T cell-inducing molecule retinoic acid, inhibiting inflammatory cytokine production, and making macrophages more susceptible to receiving suppressive signals from adenosine. Correspondingly, adenosine receptor agonist treatment also limited HDM-driven allergic airway inflammation through an action on alveolar macrophages. CONCLUSIONS: These data provide insight into the mechanisms by which lung macrophages dampen allergen-induced airway inflammation. They suggest that targeting lung macrophages to increase their phagocytic capacity, enhance their ability to make retinoic acid, dampen their capacity to make inflammatory cytokines, and increase their responsiveness to adenosine, could be useful to suppress allergic responses.


Asunto(s)
Asma/inmunología , Hipersensibilidad/inmunología , Macrófagos Alveolares/inmunología , Hipersensibilidad Respiratoria/inmunología , Linfocitos T Reguladores/inmunología , Animales , Antígenos Dermatofagoides/inmunología , Apoptosis , Células Cultivadas , Modelos Animales de Enfermedad , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Pyroglyphidae
18.
J Allergy Clin Immunol ; 147(6): 2316-2329, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33160971

RESUMEN

BACKGROUND: The selective reduction of memory TH2 cell responses could be key to affording tolerance and protection from the recurrence of damaging allergic pathology. OBJECTIVE: We asked whether TNF family costimulatory molecules cooperated to promote accumulation and reactivity of effector memory CD4 T cells to inhaled complex allergen, and whether their neutralization could promote airway tolerance to subsequent reexposure to allergen. METHODS: Mice were sensitized intraperitoneally or intranasally with house dust mite and challenged with intranasal allergen after memory had developed. We assessed whether single or combined blockade of OX40L/CD252 and CD30L/CD153 inhibited memory T cells from driving acute asthmatic lung inflammation and protected mice following exposure to allergen at a later time. RESULTS: OX40- or CD30-deficient animals showed strong or partial protection against allergic airway inflammation; however, neutralizing either molecule alone during the secondary response to allergen had little effect on the frequency of effector memory CD4 T cells formed and acute lung inflammation. In contrast, a significant reduction in eosinophilic inflammation was observed when OX40L and CD30L were simultaneously neutralized, with dual blockade inhibiting effector memory TH2 cell expansion in the lungs, whereas formation of peripherally induced regulatory T cells remained intact. Moreover, dual blockade during the secondary response resulted in a tolerogenic state such that mice did not develop a normal tertiary memory TH2 cell and lung inflammatory response when challenged weeks later with allergen. CONCLUSION: Memory T-cell responses to complex allergens are controlled by several TNF costimulatory interactions, and their combination targeting might represent a strategy to reduce the severity of inflammatory reactions following reexposure to allergen.


Asunto(s)
Alérgenos/inmunología , Ligando CD30/antagonistas & inhibidores , Memoria Inmunológica , Ligando OX40/antagonistas & inhibidores , Células Th2/inmunología , Células Th2/metabolismo , Animales , Asma/etiología , Asma/metabolismo , Asma/patología , Biomarcadores , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades/inmunología , Humanos , Hipersensibilidad/inmunología , Hipersensibilidad/metabolismo , Hipersensibilidad/patología , Ratones , Neumonía/etiología , Neumonía/metabolismo , Neumonía/patología
19.
J Immunol ; 205(9): 2414-2422, 2020 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-32958689

RESUMEN

Lung fibrosis and tissue remodeling are features of chronic diseases such as severe asthma, idiopathic pulmonary fibrosis, and systemic sclerosis. However, fibrosis-targeted therapies are currently limited. We demonstrate in mouse models of allergen- and bleomycin-driven airway inflammation that neutralization of the TNF family cytokine TL1A through Ab blocking or genetic deletion of its receptor DR3 restricted increases in peribronchial smooth muscle mass and accumulation of lung collagen, primary features of remodeling. TL1A was found as a soluble molecule in the airways and expressed on the surface of alveolar macrophages, dendritic cells, innate lymphoid type 2 cells, and subpopulations of lung structural cells. DR3 was found on CD4 T cells, innate lymphoid type 2 cells, macrophages, fibroblasts, and some epithelial cells. Suggesting in part a direct activity on lung structural cells, administration of recombinant TL1A into the naive mouse airways drove remodeling in the absence of other inflammatory stimuli, innate lymphoid cells, and adaptive immunity. Correspondingly, human lung fibroblasts and bronchial epithelial cells were found to express DR3 and responded to TL1A by proliferating and/or producing fibrotic molecules such as collagen and periostin. Reagents that disrupt the interaction of TL1A with DR3 then have the potential to prevent deregulated tissue cell activity in lung diseases that involve fibrosis and remodeling.


Asunto(s)
Remodelación de las Vías Aéreas (Respiratorias)/inmunología , Fibrosis Pulmonar Idiopática/inmunología , Pulmón/inmunología , Miembro 15 de la Superfamilia de Ligandos de Factores de Necrosis Tumoral/inmunología , Inmunidad Adaptativa/inmunología , Animales , Asma/inmunología , Bleomicina/inmunología , Linfocitos T CD4-Positivos/inmunología , Línea Celular , Células Dendríticas/inmunología , Células Epiteliales/inmunología , Femenino , Humanos , Inmunidad Innata/inmunología , Inflamación/inmunología , Linfocitos/inmunología , Macrófagos Alveolares/inmunología , Ratones , Ratones Endogámicos C57BL
20.
J Immunol ; 204(7): 1892-1903, 2020 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-32041783

RESUMEN

4-1BBL, a member of the TNF superfamily, regulates the sustained production of inflammatory cytokines in macrophages triggered by TLR signaling. In this study, we have investigated the role of 4-1BBL in macrophage metabolism and polarization and in skin inflammation using a model of imiquimod-induced psoriasis in mice. Genetic ablation or blocking of 4-1BBL signaling by Ab or 4-1BB-Fc alleviated the pathology of psoriasis by regulating the expression of inflammatory cytokines associated with macrophage activation and regulated the polarization of macrophages in vitro. We further linked this result with macrophage by finding that 4-1BBL expression during the immediate TLR response was dependent on glycolysis, mitochondrial oxidative phosphorylation, and fatty acid metabolism, whereas the late-phase 4-1BBL-mediated sustained inflammatory response was dependent on glycolysis and fatty acid synthesis. Correlating with this, administration of a fatty acid synthase inhibitor, cerulenin, also alleviated the pathology of psoriasis. We further found that 4-1BBL-mediated psoriasis development is independent of its receptor 4-1BB, as a deficiency of 4-1BB augmented the severity of psoriasis linked to a reduced regulatory T cell population and increased IL-17A expression in γδ T cells. Additionally, coblocking of 4-1BBL signaling and IL-17A activity additively ameliorated psoriasis. Taken together, 4-1BBL signaling regulates macrophage polarization and contributes to imiquimod-induced psoriasis by sustaining inflammation, providing a possible avenue for psoriasis treatment in patients.


Asunto(s)
Ligando 4-1BB/metabolismo , Imiquimod/farmacología , Macrófagos/metabolismo , Psoriasis/inducido químicamente , Psoriasis/metabolismo , Transducción de Señal/fisiología , Animales , Línea Celular , Femenino , Inflamación/metabolismo , Interleucina-17/metabolismo , Activación de Macrófagos/efectos de los fármacos , Activación de Macrófagos/fisiología , Macrófagos/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Células RAW 264.7 , Transducción de Señal/efectos de los fármacos , Piel/efectos de los fármacos , Piel/metabolismo , Linfocitos T Reguladores/efectos de los fármacos , Linfocitos T Reguladores/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...